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Abstract. The problem of assembling components into series modules to maximize the sys-
tem reliability has been intensively studied in the literature. Invariably, the methods employed
exploit special properties of the reliability function through standard analytical optimization
techniques. We propose a geometric approach by exploiting the assembly polytope – a poly-
tope generated by the potential assembly configurations. The new approach yields simpler
proofs of known results, as well as new results about systems where the number of compo-
nents in a module is not fixed, but subject to lower and upper bounds.

1. Introduction

Consider a monotone system with p modules where both the system and
each module are in one of two states – operative or inoperative, and where
the state of the system depends on the joint states of the modules. The
adjective “monotone” means that the system’s performance is monotone in
the performance of its modules, that is, it cannot move from the operative
state to the inoperative state as the result of one of the modules moving
from the inoperative state to the operative state. Each module Mi requires
components of different types that are in series structure, that is, Mi is
operative if and only if all its components are operative. The system’s state
is determined by a performance function J(.) whose variables are the states
of the modules, that is, when the state of module Mi for each i =1, . . . , p

is si , the state of the system is J (s1, . . . , sp). By assigning value 1 to oper-
ativeness and value 0 to inoperativeness, the function J is a Boolean func-
tion, with domain {0,1}p and range {0,1}; system-monotonicity means that
the function J is monotone. Constraints on the number of components
of each type that the modules require are specified in terms of lower and
upper bounds, and we refer to these constraints as the system specifications.

We next consider the components of which the modules are constructed.
There are t types of components indexed u=1, . . . , t , and for each u there
are nu components of type u. Let ruj denote the reliability of the j th item
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of type u, j = 1, . . . , nu, u = 1, . . . , t , that is, the probability that this item
is operative. Operativeness of these items are assumed to be stochastically
independent. Without loss of generality, we will assume that the compo-
nents of each type are indexed so that

0<ru1 � ru2 � · · ·� runu
�1 for u=1, . . . , t; (1.1)

An assembly is an assignment of the nu components of each type u
to the modules that satisfies the system specifications; formally, such an
assembly consists of partitions for each u = 1, . . . , t of the set {1, . . . , nu}
into parts πu1, . . . , πup. As a module is operative if and only if all its com-
ponents are, the probability that module Mi is operative when π is applied
is given by

r(π)i =
t∏

u=1

∏

j∈πui

ruj . (1.2)

and we refer to r(π)i as the reliability of Mi under assembly π . The sys-
tem reliability under assembly π , that is, the probability that the system is
operative when π is applied, is then given by

R(π)≡
∑

s∈{0,1}p
J (s)

{ ∏

{i:si=0}
[1− r(π)i ]

}{ ∏

{i:si=1}
r(π)i

}
. (1.3)

The optimal assembly problem is to determine an assembly such that the
system reliability is maximized over the set of feasible assemblies. A num-
ber of authors [2, 3, 5, 6, 7, 9, 11, 13, 14, 15, 16] studied instances of this
problem where the system specifications prescribe the number of compo-
nents of each type that the modules require (see [10] for a review of specific
results obtained in these references), Hwang and Rothblum [10] solved this
problem in its generality. Their solution method first considers systems with
two modules, then extends the analysis to systems with arbitrarily many
modules but with one item-type required by all the modules, and finally
extends the analysis to the general case. Each step requires subtle pertur-
bation arguments that involve part-reliabilities and the structure function.

In this paper, we treat the assembly problem as an assignment problem,
namely, every component must be assigned to a module. We then seek an
optimal assembly under lower and upper bound constraints on the number
of parts of each type in each module. The need for assignment may come
up in various scenarios, for example, when the components are personnel
each must be assigned to a job, or when the storage of components outside
of the modules is expensive, or when idle components may cause degrad-
ing in reliability (such as unused cars or uninhabited houses). Our solution
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method uses a new polytope-approach. The new approach yields simpler
proofs of existing results for the problem with prescribed specifications as
well as a solution for the problem where the number of components of
each type that the modules require are constrained by lower and upper
bounds, a problem which has not been solved before.

In Section 2, we formalize the reliability maximization problem as an
additive assembly problem with asymmetric Schur convex objective – terms
that are defined in that section. After introducing some preliminaries about
supermodular functions in Section 3, we analyze and solve the additive
assembly problem with asymmetric Schur convex objective with prescribed
requirements and with bounds on the requirements in Sections 4 and 5,
respectively. Finally, Sections 6 contains a discussion of potential extensions
of the results of the earlier sections.

2. The Additive Assembly Problem with Asymmetric Schur Convex
Objective

The ith unit vector in Rp is the vector ei with ei
i = 1 and ei

t = 0 for t ∈
{1, . . . , p}\{i}. With i ranging over i = 1, . . . , p, we refer to these vectors
as the standard unit vectors in Rp. Also, for i, j ∈ {1, . . . , p}, let eij be the
difference between the i- and the j -unit vectors in Rp.

Let T be an interval and g a real-valued continuously differentiable func-
tion on T p, that is, g has continuous partial derivatives with respect to all
variables. The function g is called asymmetric Schur convex if for every y ∈
T p and distinct i, j ∈ {1, . . . , p}, the function g

ij
y (γ ) ≡ g(y + γ eij ) does not

decrease after an increase (here “after” means – “as γ increases”); as g is con-
tinuously differentiable, this condition is equivalent to the requirement that(

d
dγ

)
g

ij
y =

(
∂

∂xi

)
g(y + γ eij ) −

(
∂

∂xj

)
g(y + γ eij ) does not have a sign-switch

from a positive value to a negative value as γ increases. The function g is
called strictly asymmetric Schur convex if it is asymmetric Schur convex and
none of the functions g

ij
y is constant on an interval; as g is continuously

differentiable, the latter means that the derivatives of these functions cannot
vanish on any interval. Asymmetric Schur convex functions were introduced
in [12]; they generalize (quasi) convex and (regular) Schur convex functions
and have the following important property (see [12]):

PROPOSITION 2.1. Let T be an interval and let g be an asymmetric Schur
convex function on T p. If P is a polytope contained in T p where the direc-
tions of the edges of P are differences of pairs of standard unit vectors in
Rp, then g attains a maximum at one of P’s vertices. Further, if g is strictly
asymmetric Schur convex, then every maximizer of g over P is a vertex
of P .
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We next show that the assembly problem described in the introduction
fits within a framework of optimization problems that concern asymmet-
ric Schur convex functions. For each u= 1, . . . , t and j = 1, . . . , nu, define
ρuj = ln ruj . As the indexing of ruj ’s satisfies (1.1), we have

−∞<ρu1 �ρu2 � · · ·�ρunu
�0 for u=1, . . . , t. (2.1)

For each assembly π and i =1, . . . , p, let

ρ(π)i ≡ ln r(π)i = ln

⎡

⎣
t∏

u=1

∏

j∈πui

ruj

⎤

⎦=
t∑

u=1

∑

j∈πui

ρuj . (2.2)

Thus, each assembly π is associated with the two p-dimensional vectors
r(π)= [r(π)1, . . . , r(π)p] and ρ(π)= [ρ(π)1, . . . , ρ(π)p)].

Given the performance function J : {0,1}p → {0,1}, let f and g be the
real-valued functions on (0,1]P and (−∞,0]p, respectively, with

f (x)=
∑

s∈{0,1}p
J (s)

⎡

⎣
∏

{i:si=0}
(1−xi)

⎤

⎦

⎡

⎣
∏

{i:si=1}
xi

⎤

⎦ for every x ∈ (0,1]p,

(2.3)

and

g(y)=f [exp(y1), . . . , exp(yp)]

=
∑

s∈{0,1}p
J (s)

⎡

⎣
∏

{i:si=0}
(1− eyi )

⎤

⎦

⎡

⎣
∏

{i:si=1}
eyi

⎤

⎦ for every y ∈ (−∞,0]p.

(2.4)

Using (1.3) and (2.2), the system reliability under an assembly π is express-
ible by

R(π)=
∑

s∈{0,1}p
J (s)

⎧
⎨

⎩
∏

i:si=0

[1− r(π)i ]

⎫
⎬

⎭

⎧
⎨

⎩
∏

i:si=1

r(π)i

⎫
⎬

⎭=f [r(π)]=g[ρ(π)].

(2.5)

Hwang and Rothblum [10, Example 3] estabished the following result.

PROPOSITION 2.2. Given any monotone performance function J : {0,1}p →
{0,1}, the function g defined by (2.3)–(2.4) is asymmetric Schur convex on
(−∞,0]p.



A POLYTOPE APPROACH TO THE OPTIMAL ASSEMBLY PROBLEM 391

Proposition 2.2 implies that the problem of determining an assembly
which maximizes system-reliability over a set of assemblies

∏
is an instance

of the problem of maximizing an expression g[ρ(π)] over
∏

with ρ(π)i
=∑t

u=1

∑
j∈πui

ρuj for i = 1, . . . , p, with the ρuj
′s satisfying (2.1), and with

g(.) as an asymmetric Schur convex on (−∞,0]p. Henceforth, we consider
this more general problem to which we refer as the additive assembly prob-
lem with asymmetric Schur convex objective (in this context, the term multi-
partition is used in the literature synonymously with assembly). We will
solve this problem when feasible assemblies π are those for which the size
of the πui ′s must satisfy lower and upper bounds.

3. Preliminaries on Supermodular Functions

Given a real-valued function λ on the subsets of {1, . . . , p} with λ(Ø)=0,
we define in this section two polytopes in Rp. A permutation of {1, . . . , p}
is a vector σ = (i1, . . . , ip) with {i1, . . . , ip} distinct and with {i1, . . . , ip}
={1, . . . , p}. Each permutation σ defines a p-vector λσ with

(λσ )is =λ({i1, . . . , is})−λ({i1, . . . , is−1}) for s =1, . . . , p. (3.1)

The permutation polytope corresponding to λ, denoted Hλ, is the convex
hull of the λσ ’s, with σ ranging over the set

∑p of all permutations of
{1, . . . , p}. Also, the polytope Cλ is defined as the solution set of the linear
inequality system

∑

i∈I

xi �λ(I) for each nonempty subset I of {1, . . . , p}, (3.2)

and

p∑

i=1

xi =λ({1, . . . , p}). (3.3)

A real-valued function λ on the nonempty subsets of {1, . . . , p} with
λ(Ø) = 0 is called supermodular if for every pair I and J of subsets of
{1, . . . , p},

λ(I ∪J )+λ(I ∩J )�λ(I)+λ(J ); (3.4)

λ is called strictly supermodular if strict inequality holds whenever the two
sets are not ordered by set inclusion, that is, I |⊂J and J |⊂I .

Parts (i) and (ii) of the next result are due to Shapley [18], see also, [8];
for part (iii) see [9].
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PROPOSITION 3.1. Suppose λ is supermodular on the subsets of {1, . . . , p}.
Then:

(i) Hλ =Cλ,
(ii) the vertices of Hλ =Cλ are precisely the λσ ’s where σ ranges over

∑p,
and

(iii) each direction of an edge of Hλ =Cλ is proportional to the difference
of a pair of standard unit vectors in Rp.

4. Prescribed-Sizes Problem

In this section we assume that nonnegative integers {nui : u = 1, . . . , t and
i =1, . . . , p} are given, and the system specifications require that the num-
ber of components of (each) type u in (each) module Mi must equal nui .

An assembly is called monotone if there exists a module Mi1 taking the
nui1 most reliable items of each type u , a second module Mi2 taking the
nui2 next most reliable items of each type u, and so on, until the last mod-
ule Mip takes the nuip least reliable items of each type u.

Let
∏

be the set of all assemblies π with each πui having the prescribed
size nui . The assembly polytope, denoted P , is defined as the convex hull
of the ρ(π)’s, with π ranging over

∏
. Also, for each subset I of {1, . . . , p}

let

ρ∗(I )=min
π∈∏

∑

i∈I

ρ(π)i; (4.1)

in particular, ρ∗(Ø)=0 and

ρ∗({1, . . . , p})=
t∑

u=1

nu∑

j=1

ρuj . (4.2)

For a subset I of {1, . . . , p} and u=1, . . . , t, let nu(I )=∑
i∈I nui ; we then

have that

ρ∗(I )=
t∑

u=1

nu(I )∑

j=1

ρuj . (4.3)

We observed that the nu(I )s (for all subserts I of {1, . . . , p}) and the sums∑s
j=1 ρuj s (for s ={1, . . . , n}) can be determined, respectively, by at most 2p

and
∑p

u=1 nu =n additions. Given these quantities, the
∑nu(I )

j=1 ρuis are availa-
ble for each u and for each I , and (4.3) can be used to determine the ρ∗(I )’s
with t −1 extra additions for each I . The total computational effort for com-
puting all the ρ∗(I )’s in this way amounts to t2p +n additions. With p fixed,
the bound is linear in the number of components n.
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LEMMA 4.1. ρ∗ is supermodular.

Proof. For subsets I and J of {1, . . . , p} and u=1, . . . , t,nu(I ∪J ) −
nu(I )=nu(J \ I )=nu(J )−nu(I ∩J ), and (2.1) implies that

ρ∗(I ∪J )−ρ∗(I )=
t∑

u=1

[
nu(I∪J )∑

i=1

ρui −
nu(I )∑

i=1

ρui

]
=

t∑

u=1

⎡

⎣
nu(I∪J )∑

i=nu(I )+1

ρui

⎤

⎦

=
t∑

u=1

⎡

⎣
nu(I )+nu(J\I )∑

i=nu(I )+1

ρui

⎤

⎦�
t∑

u=1

⎡

⎣
nu(I∩J )+nu(J\I )∑

i=nu(I∩J )+1

ρui

⎤

⎦

=
t∑

u=1

⎡

⎣
nu(J )∑

i=nu(I∩J )+1

ρui

⎤

⎦=
t∑

i=1

[
nu(J )∑

i=1

ρui −
nu(I∩J )∑

i=1

ρui

]

=ρ∗(J )−ρ∗(I ∩J ).

Given a permutation σ = (i1, . . . , ip) of {1, . . . , p}, the assembly corre-
sponding to σ , denoted πσ , is defined as the assembly with

(πσ )uis ={nu({i1, . . . , is−1})+1, . . . , nu({i1, . . . , is})}
for u=1, . . . , t and s =1, . . . , p. (4.4)

LEMMA 4.2

(i) For every permutation σ of {1, . . . , p}, πσ is a monotone assembly with
ρ(πσ )= (ρ∗)σ .

(ii) The correspondence σ →πσ mapping
∑p into monotone assemblies is onto.

Proof. (i) Consider a permutation σ = (i1, . . . , ip) of {1, . . . , p}. The
monotonicity of πσ is immediate. Next, for u=1, . . . , t and s =1, . . . , p, let
nu(s) ≡ nu({i1, . . . , is}) = ∑s

q=1 nuiq . It follows from (4.3) and (4.4) that for
s = 1, . . . , p, ρ∗({i1, . . . , is}) = ∑t

u=1

∑nu(s)

j=1 ρuj = ∑s
q=1[ρ(πσ )]iq , and there-

fore [(ρ∗)σ ]is = ρ∗({i1, . . . , is}) − ρ∗({i1, . . . , is−1}) = [ρ(πσ )]is . As {i1, . . . , ip}
={1, . . . , p}, we conclude that (ρ∗)σ =ρ(πσ ).

(ii) A monotone assembly π , defines a ranking on {1, . . . , p} which
defines a permutation σ = (i1, . . . , ip) with is as the sth element in the rank-
ing. It is straightforward to see that in this case πσ =π .

As ρ∗ is a function on the subsets of {1, . . . , p} with ρ∗(Ø)=0, the poly-
topes Cρ∗ and Hρ∗ are well-defined (see Section 2).
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THEOREM 4.3

(i) P =Hρ∗ =Cρ∗ .
(ii) The vertices of P are the vectors {ρπ :π ranging over the set of mono-

tone assemblies}.
(iii) Each direction of an edge of P is proportional to the difference of a

pair of standard unit vectors in Rp.

Proof. From (4.1), for every assembly π and subset I of {1, . . . , p}, ρ∗(I )

�
∑

i∈I ρ(π)i and, using (4.2), ρ∗({1, . . . , p})=∑t
u=1

∑nu

j=1 ρuj
=∑t

u=1

∑p

i=1∑
j∈πi

ρuj
=∑p

i=1 ρ(π)i . So, ρ(π)∈Cρ∗ . It follows that the convex hulls of
the ρ(π)’s, namely P , is contained in Cρ∗ . Next, Lemma 4.2 implies that

P = conv {ρ(π);π is an assembly }⊇ conv {ρ(π);π

is a monotone assembly }
= conv {(ρ∗)σ ;σ is a permutation of {1, . . . , p}}=Hρ∗ .

Next, Proposition 3.1 and the supermodularity of ρ∗ (Lemma 4.1) imply
that Hρ∗ =Cρ∗ and that the vertices of this polytope are the (ρ∗)σ s with σ

ranging over the permutations of {1, . . . , p}. So, P ⊆Cρ∗ =Hρ∗ ⊆P , imply-
ing that P = Cρ∗ = Hρ∗ ; further, Lemma 4.2 implies that the vertices of
this polytope are the ρ(π)s with π ranging over the monotone assemblies.
Finally, part (iii) follows directly from the third part of Proposition 3.1 and
the above results.

The linear inequality representation of P through Cρ∗ has p variables
and 2p constraints that use the ρ∗(I )’s. We recall the paragraph following
(4.3) that shows how to determine the ρ∗(I )’s with t2p +n additions.

THEOREM 4.4. There exists a monotone optimal assembly.

Proof. Proposition 2.1, the asymmetric Schur convexity of g and part (iii)
of Theorem 4.3 assure that g attains a maximum over P at a vertex of that
polytope; Theorem 4.3 also assures that such a vertex has the representa-
tion ρ(π∗) for some monotone assembly π∗. Now, let π be an arbitrary
assembly; then ρ(π)∈P and R(π)=g[ρ(π)]�g[ρ(π∗)]=R(π∗).

Theorem 4.4 implies that the assembly problem with prescribed sizes can
be solved by evaluating the monotone assemblies; by Lemma 4.2, these are
precisely the p!πσ ’s, determined by the permutations over {1, . . . , p}. In
order to evaluate R(πσ ) = g[ρ(πσ )] for a permutation σ , one has to eval-
uate g(.) at ρ(πσ )= (ρ∗)σ (the equality following from Lemma 4.2). Now,
each (ρ∗)σ is available by executing t subtractions of corresponding ρ∗(I )s;
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again, see the paragraph following (4.3) for a discussion of the computa-
tion of all ρ∗(I )s using at most t2p +n additons.

5. The Bounded-Sizes Problem

In the current section we consider the optimal assembly problem where
lower and upper bounds are prescribed on the number of components of
each type to be assigned to each module. Specifically, throughout this sec-
tion, integers Lui and Uui for u = 1, . . . , t and i = 1, . . . , p are given with
Lui �Uui and

∑p

i=1 Lui �nu �
∑p

i=1 Uui for u=1, . . . , t . We let
∏L,U be the

set of assemblies π with Lui � |πui |�Uui for u= 1, . . . , t and i = 1, . . . , p,
and the assembly polytope P L,U be the convex hull of the vectors ρ(π)

with π ranging over
∏L,U .

In this section we show that an asymmetric Schur convex function g(.)
over P L,U attains a maximum at a vertex of P L,U and that vertices corre-
spond to monotone assemblies; further, we provide a linear inequality rep-
resentation of the polytope P L,U .

The next result asserts optimality of monotone assemblies and assures a
representation of vertices of P L,U via monotone assemblies. It follows from
the results of Section 4.

THEOREM 5.1

(i) There exists a monotone assembly which is optimal over
∏L,U .

(ii) Each vertex of P L,U has a representation ρ(π) with π as a monotone
assembly in

∏L,U .
Proof. As there are finitely many assemblies, there exists an optimal

assembly. Let π∗ be an optimal assembly. By considering the problem with
prescribed number |(π∗)ui | of components of each type u for each mod-
ule Mi , we have from Theorem 4.4 that this problem has a monotone opti-
mal assembly, say π ′. It follows ρ(π∗)�ρ(π ′); the optimality of π∗ for the
bounded-sizes problem then implies that ρ(π ′)=ρ(π∗), assuring that π ′ is
also optimal for that problem.

A vertex v of P L,U has a representation ρ(π̄) with π̄ ∈∏L,U . Let P be the
polytope corresponding to the assembly problem where the number of compo-
nents of each type u for each module Mi is |π̄ui |. As P is the convex hull of a
set that is smaller than the one defining P L,U and as v ∈P,v is a vertex of P as
well. By Theorem 4.3, v has a representation as ρ(π ′) where π ′ is a monotone
assembly having |π ′

ui |= |π̄ui | for each u and i, in particular, π ′ ∈∏L,U .

The conclusions and proof of Theorem 5.1 extend to sets of assemblies
with arbitrary constraints on the number of components of each type in
each module (not just constraints that are determined through lower and
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upper bounds). In the remainder of this section we explore the extra struc-
ture available in bounded-sizes problems to obtain a refined analysis.

Parallel to our development in Section 4, define the real-valued function
on subsets of {1, . . . , p} where for subset I ,

ρL,U
∗ (I )=min

{
∑

i∈I

ρ(π)i :π ∈
∏L,U

}
; (5.1)

in particular, ρL,U
∗ (Ø)=0 and

ρL,U
∗ ({1, . . . , p})=

t∑

u=1

nu∑

j=1

ρuj
. (5.2)

For each subset I of {1, . . . , p}, let

n−
u (I )=min

{
∑

i∈1

Uui, nu −
∑

i∈I c

Lui

}
, for u=1, . . . , t. (5.3)

where I c ≡ {1, . . . , p}\I . The next lemma provides a representation of
ρL,U

∗ (.) that resembles (4.3) (which applied to the fixed sizes case).

LEMMA 5.2
(i) For each permutation σ = (i1, . . . , ip) of {1, . . . , p}, there exists a mono-

tone assembly πσ ∈∏L,U with (ρL,U
∗ )σ =ρ(π) and

(πσ )uis ={n−
u (i1, . . . , is−i})+1, . . . , n−

u ({i1, . . . , is})}
for u=1, . . . , t and s =1, . . . , p. (5.4)

(ii) For each subset I of {1, . . . , p},

ρL,U
∗ (I )=

t∑

u=1

n−
u (I )∑

j=1

ρuj . (5.5)

Proof. (i) For each assembly π ∈ ∏L,U and u = 1, . . . , t,
∑

i∈I |πui | �∑
i∈I Uui and

∑
i∈I |πui | =

∑p

i=1 |πui | −
∑

i∈I c |πui | � n − ∑
i∈I c Lui , implying

that
∑

i∈I |πui | � n−
u (I ); hence, (2.1) (which includes the assertion that the

ρuj ’s are nonpositive) implies that
∑

i∈I

∑
j∈πui

ρuj �
∑n−

u (I )

j=1 ρuj . It follows
that

∑

i∈I

[ρ(π)]i =
∑

i∈I

t∑

u=1

∑

j∈πui

ρuj =
t∑

u=1

∑

i∈I

∑

j∈πui

ρuj �
t∑

u=1

n−
u (I )∑

j=1

ρuj ,
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and therefore

ρL,U
∗ (I )�

t∑

u=1

n−
u (I )∑

j=1

ρuj . (5.6)

Let σ = (i1, . . . , ip) be a permutation of {1, . . . , p}. For u= 1, . . . , t and
i =1, . . . , p define n−

ui by setting for each s =1, . . . , p, n−
uis

≡n−
u ({i1, . . . , is})

− n−
u ({i1, . . . , is−1}). Fix u ∈ {1, . . . , p}. We will show that for u = 1, . . . , t

and i =1, . . . , p,Lui �n−
ui �Uui ; this will be established by showing that for

u=1, . . . , t and s =1, . . . , p,Luis �n−
uis

�Uuis . So, fix u and s and set Is−1 ≡
{i1, . . . , is−1} and Is ={i1, . . . , is}. We consider two cases, one of which has
two subcases.

Case I: n−
u (Is−1) = ∑

i∈Is−1
Uui�n − ∑

i∈Ic
s−1

Lui. In this case, if n−
u (Is)

= ∑
i∈Is

Uui , then n−
uis

= n−
u (Is) − n−

u (Is−1) = Uuis � Luis , assuring that Luis �
n−

uis
� Uuis . Alternatively, if n−

u (Is) = n − ∑
i∈I c

s
Lui �

∑
i∈Is

Uui , then n−
uis

= n−
u (Is) − n−

u (Is−i) �
∑

i∈Is
Uui − ∑

i∈Is−1
Uui = Uuis and n−

uis
= n−

u (Is) −
n−

u (Is−1)� (n−∑
i∈I c

s
Lui)− (n−∑

i∈I c
s−1

Lui)=Luis .
Case II: n−

u (Is−1) = n −∑
i∈Ic

s−1
Lui�

∑
i∈Is−1

Uui. In this case,
∑

i∈Is
Uui

= ∑
i∈Is−1

Uui + Uuis � (n − ∑c
i∈Is−1

Lui) + Luis = n − ∑
i∈I c

s
Lui , assuring that

n−
u (Is) = n − ∑

i∈I c
s
Lui and n−

uiS
= n−

u (Is) − n−
u (Is−1) = (n − ∑

i∈I c
s
Lui) − (n −∑

i∈I c
s−1

Lui)=Luis �Uuis , assuring that Luis �n−
uis

�Uuis .
Consider the assembly problem with prescribed sizes n−

ui for u= 1, . . . , t

and i = 1, . . . , p and the monotone assembly πσ corresponding to σ as
defined by (4.4), that is, πσ is determined by (5.7). In particular, |(πσ )ui |
= n−

ui for each u and i, and the above paragraphs assure that πσ ∈ ∏L,U .
Next, for s =1, . . . , p,∪i∈Is

(πσ )ui ={1, . . . , n−
u (Is)} and

∑

i∈Is

[ρ(πσ )]i =
∑

i∈Is

t∑

u=1

∑

j∈(πσ )ui

ρuj =
t∑

u=1

∑

i∈Is

∑

j∈(πσ )ui

ρuj

=
t∑

u=1

n−
u (Is )∑

j=1

ρuj �ρL,U
∗ (Is), (5.7)

the last inequality following form (5.6). As the definition of ρL,U
∗ in

(5.1) assures that ρL,U
∗ (Is) �

∑
i∈Is

[ρ(πσ )]i , we conclude that equality
holds throughout (5.7). Thus, for s = 1, . . . , p,

∑
i∈Is

[ρ(πσ )]i = ρL,U
∗ (Is)

= ∑
i∈Is

[(ρL,U
∗ )σ ]i . It follows that for s = 1, . . . , p, ρ(πσ )is = [(ρL,U

∗ )σ ]is ; as
{i1, . . . , ip}={1, . . . , p}, we conclude that ρ(πσ )= (ρL,U

∗ )σ .
(ii) Let I ⊆{1, . . . , p}, say I ={i1, . . . , is}. One can construct a permuta-

tion σ of {1, . . . , p} with i1, . . . , is as the first s elements, in order. With
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respect to the notation of the proof of (i), we have that I = IS and the
established equalities in (5.7) prove (5.5).

Part (i) of Lemma 5.2 generalizes part (i) of Lemma 4.2 from the pre-
scribed-sizes case to the bounded-sizes case. But, part (ii) of Lemma 4.2
does not have a corresponding generalization as the number of monotone
assemblies is generally larger than the number of permutations of {1, . . . , p}
which equals p!. In fact, for each (feasible) collection {nui :Lui �nui �Uui, u=
1, . . . , t and i =1, . . . , p} there exists a monotone assembly for each permu-
tation σ of {1, . . . , p}; with �L,U , as the set of such feasible collections, the
number of monotone assemblies is |�|p!. When |�|�1, this number is larger
than the number p!. It is noted that the effort of determining the vector asso-
ciated with each monotone assembly is tn, so the total effort in computing
all vectors associated with monotone assemblies is tn|�|p!.

COROLLARY 5.3. Suppose I1, . . . , Ik are subsets of {1, . . . , p} with Ø ⊆
I1 ⊂ · · ·⊂ Ik ⊆{1, . . . , p}. Then there exists an assembly π ∈∏L,U satisfying
ρL,U

∗ (It )=∑
i∈It

[ρ(π)]i .

Proof. We first assume that I1 �=Ø and Ik �= {1, . . . , p}. The list I1, . . . , Ik

can be extended by adding sets to one having p − 1 elements, that is, we
can assume that k =p −1. Let I0 =Ø and Ip ={1, . . . , p}. We observe that
in this case σ ≡ (I1 \ I0, . . . , Ip \ Ip−1) is a permutation. (here we identify set
containing a single element with that element). Let π ∈ ∏L,U be a mono-
tone assembly satisfying ρ(π)= (ρL,U

∗ )σ (whose existence was established in
Lemma 5.1). Now, suppose σ = (i1, . . . , ip). For each t =1, . . . , p then It =
{i1, . . . , it} and

∑

i∈It

[ρ(π)]i =
t∑

s=1

[ρ(π)]is =
t∑

s=1

[(ρL,U
∗ )σ ]is =ρL,U

∗ ({i1, . . . , it})=ρL,U
∗ (It ).

The extension to the cases where I1 �=Ø and/or Ik �={1, . . . , p} is straightfor-
ward.

LEMMA 5.4. ρL,U
∗ is supermodular.

Proof. Let I and J be subsets of {1, . . . , p} which are not ordered by set
inclusion. Then Ø⊆I ∩J ⊂I ∪J ⊆{1, . . . , p} and Corollary 5.3 implies that
there exists an assembly π in

∏L,U satisfying ρL,U
∗ (I ∩ J ) = ∑

i∈I∩J [ρ(π)]i
and ρL,U

∗ (I ∪J )=∑
i∈I∪J [ρ(π)]i . Consider the assembly problem with pre-

scribed sizes nui ≡|πui | for u=1, . . . , t and i =1, . . . , p and let ρ∗ be given
by (4.1). For each S ⊆ {1, . . . , p}, ρL,U

∗ (S) � ρ∗(S) �
∑

i∈S [ρ(π)]i . Thus, the
assumption about π implies that ρL,U

∗ (I ∩ J ) = ρ∗(I ∩ J ) = ∑
i∈I∩J [ρ(π)]i
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and ρL,U
∗ (I ∪ J ) = ρ∗(I ∪ J ) = ∑

i∈I∪J [ρ(π)]i . From the supermodularity of
ρ∗ (Lemma 4.1), then

ρL,U
∗ (I ∪J )+ρL,U

∗ (I ∩J )=ρ∗(I ∪J )+ρ∗(I ∩J )�ρ∗(I )

+ρ∗(J )�ρL,U
∗ (I )+ρL,U

∗ (J ),

proving that ρL,U
∗ is supermodular.

Recall that the set of permutations of {1, . . . , p} is denoted
∑p. Given

σ in
∑p, the monotone assemblies in

∏L,U that is constructed in Lemma
5.2 (determined by (5.4) ) will be denoted πσ .

THEOREM 5.5

(i) P L,U =HρL,U
∗ =CρL,U

∗ .
(ii) The vertices of P L,U are precisely the ρ(πσ )s where σ ranges over

∑p.
(iii) Each direction of an edge of P L,U is proportional to the difference of a

pair of standard unit vectors in RP .

Proof. (i) From (5.1), for every assembly π ∈ ∏L,U and subset
I of {1, . . . , p},∑i∈I ρ(π)i � ρL,U

∗ (I ), and from (5.2),
∑p

i=1 ρ(π)i =∑t
u=1

∑p

i=1

∑
j∈πi

ρuj =∑t
u=1

∑nu

j=1 ρuj =CρL,U
∗ ({1, . . . , p}), proving that ρ(π)∈

CρL,U
∗ . It follows that the convex hulls of the ρ(π)s, namely P L,U , is contained

in CρL,U
∗ , that is, P L,U ⊆CρL,U

∗ . Next, the supermodularity of ρL,U
∗ (Lemma

5.4) and Proposition 3.1 imply that HρL,U
∗ =CρL,U

∗ . Finally, Lemma 5.2 implies
that

P L,U = conv {ρ(π);π ∈�L,U }⊇ conv{ρ(π);π

is a monotone assembly in �L.U }

⊇ conv

{
(ρL,U

∗ )σ ;σ ∈
∑

p

}
=HρL,U

∗ ,

So, P L,U ⊆CρL,U
∗ =HρU,L

∗ ⊆P L,U , implying that P L,U =CρL,U
∗ =HρU,L

∗ .
(ii) The supermodularity of ρL,U

∗ (Lemma 5.4), part (ii) of Lemma 3.1
and the established part (i) show that the vertices of P L,U =HρL,U

∗ =CρL,U
∗

are the (ρL,U
∗ )σ with σ ranging over

∑p, and part (i) of Lemma 5.2 shows
that these are precisely the ρ(πσ )′s.

(iii) Part (iii) of Lemma 3.1, the supermodularity of ρL,U
∗ (Lemma 5.4) and

(the established) part (i), immediately imply that the directions of the edges
of P L,U =HρL,U

∗ =CρL,U
∗ are proportional to differences of unit vectors.
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The equality P L.U = CρL,U
∗ in part (i) of Theorem 5.5 provides a linear

inequality representation for P L.U in terms of the ρL,U
∗ (I )s, using p vari-

ables and 2p constraints. Now, the method for determining the ρ∗(I )′s in Sec-
tion 4 (following Theorem 4.3) can be modified for computing the ρL,U

∗ (I )s,
with (5.5) replacing (4.3). As (5.5) uses the n−

u (I )′s instead of using the nu
′s

in (4.3), the only needed modification is the computation of the n−
u (I )′s

(instead of the nu(I )′s). But, these are available from (5.3) – their compu-
tation requires the computation of all (nu −∑

i∈I Lui)
′s and (

∑
i∈I Uui)

′s and
executing a minimization of two terms for each I . So, the n−

u (I )′s can be
determined with at most 3t2p arithmetic operations instead of the t2p oper-
ations needed to compute the nu(I )′s. The resulting effort to compute the
ρL,U

∗ (I )s is then bounded by
∑t

u=1 nu + 4t2p arithmetic operations. With p

fixed, the bound is linear in the number of components
∑t

u=1 nu.
Part (i) of Theorem 5.5 and part (i) of Lemma 5.2 show that each vertex

of P L,U has the representation ρ(πσ ) for some permutation σ of {1, . . . , p};
in particular, the number of vertices of P L,U is bounded by the number
of permutations over {1, . . . , p}, namely by p!. Once all the n−

u (I )′s and
(ρL,U

∗ )(I )′s are determined, the πσ
′s are readily available and the compu-

tation of each ρ(πσ )= (ρL,U
∗ )σ from (3.1) with λ=ρL,U

∗ , requires t subtrac-
tions. This procedure will generate a set of p! (monotone) assemblies along
with the associated vectors such that these vectors are precisely the verti-
ces of P L,U ; the additional computational effort, beyond the computation
of the n−

u (I )′s and the (ρL,U
∗ )(I )′s, consists of p!t arithmetic operations.

As the πσ
′s are monotone assemblies, part (ii) of Theorem 5.5 implies that

each vertex of P L,U has a representation as the vector that is associated
with some monotone assembly. But, the next example demonstrates that the
equality of the set of vertices of the assembly polytope and the set of vectors
associated with monotone assemblies does not extend from the prescribed-
sizes problem (part (ii) of Theorem 4.3) to the bounded-sizes problem.

Example 1 Suppose t =1, p=2, n1 =4, ρ1i =−1 for i =1, . . . ,4. Consider
the set of assemblies π with 1� |π11|�3 and 1� |π12|�3. The assemblies in
this set are the (ordered) partitions of 1, 2, 3, 4 into two nonempty parts.
Consider the monotone assemblies π0 = ({1,2}, {3,4}), π1 = ({1,2,3}, {4}, )
and π2 = ({1}, {2,3,4}). We then have that ρ(π0)=−(2,2), ρ(π1)=−(3,1)

and ρ(π2) = −(1,3) and ρ(π0) = 1
2ρ(π1) + 1

2ρ(π2), assuring that ρ(π0) is
not a vertex of the corresponding assembly polytope.

We next use Theorem 5.5 to solve the optimal assembly problem.

COROLLARY 5.6 There exists a permutation σ such that πσ is a monotone
optimal assembly.
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Proof. Proposition 2.1, the asymmetric Schur convexity of g and part (iv)
of Theorem 5.5 assure that g attains a maximum over P L.U at a vertex
of that polytope. Part (ii) of Theorem 5.5 assures that such a vertex has
a representation ρ(πσ ). Now, let π be an arbitrary assembly; then ρ(π)∈
P L,U and R(π)=g[ρ(π)]�g[ρ(πσ )]=R(πσ ). Part (ii) of Theorem 5.5 also
assures that π is monotone.

The two paragraphs following Theorem 5.5 showed how the set of vertices of
P L,U can be generated with computational effort that is linear in n (the size of
the partitioned set), while proportional to p!. By Theorem 5.6, the evaluation
of R(.) for these assemblies and the selection of the best one yields an optimal
solution to the optimal assembly problem with bounded part-sizes.

6. Discussion and Extensions

The equality P L,U = CρL,U
∗ , established in Theorem 5.5, provides a repre-

sentation of P L,U as the feasible set of a system of 2P linear inequalities
with p variables; it follows that when p is small, linear functions can be
efficiently optimized over P L,U . This conclusion together with part (iii) of
Theorem 5.5 allow one to apply the vertex enumeration method that was
developed in [17] for solving (the newly defined) Convex Combinatorial
Optimization Problems. Specifically, [17] describes an algorithm that will
efficiently enumerate vertices of a polytope P under two assumptions: (i)
the efficient solvability of linear programs over P , and (ii) the availability
of a (short) list of vectors that contains directions of all of P ′s edges. The-
orem 5.5 establishes these properties for the assembly polytope. We have
already seen that linear functions can be efficiently optimized over P L,U

and part (iii) of Theorem 5.5 identifies
(p

2

)
vectors which cover the direc-

tions of all the edges of P L,U . The algorithm that is described in [17] can
then enumerate the vertices of P L,U by solving at most O[p(

p

2 )] linear pro-
grams over P L,U . Unfortunately, the complexity bound of this method is
not better than that of enumerating the πσ s.

Theorem 5.6 and 4.4 provide conditions for the existence of optimal
assembly that have some restricted structure. We next discuss conditions
under which every optimal assembly has that structure. We say that a per-
formance function is coherent if no module i is irrelevant in the sense
that J (.) is independent of the ith variable. Following [12, example 3]
we observe that when J (.) is coherent the function g(.) defined by (2.3)
is strictly asymmetric Schur convex on (−∞,0)p.1 It then follows from

1It was observed in [11] that coherence suffices for g to be strictly assymmetric Schur convex,
but the statement therein ignores the fact that the conclusion applies only to the restriction of g

to (−∞,0)p .
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Proposition 2.1 that every maximizer of g(.) over P L,U is a vertex of P L,U ,
implying that every optimal assembly π has ρ(π) as a vertex if P L,U . We
further observe that the (rather complicated) analysis of [1] can be used
to show that when all the inequalities of (2.1) hold strictly, each vertex of
P L,U corresponds to a unique assembly. It then follows from the results of
Section 5 that every optimal assembly is monotone, has the form πσ and
has its associated vector as a vertex of P L,U .

We finally describe extensions of our results to assembly problems in
which the objective function does not necessarily express system-reliability.
Consider an assembly problem in which ρui

′s are associated with the par-
titioned elements, but without having the interpretation of element-reliabil-
ity. Also, the objective function R(.) is expressible as g[ρ(π)] with ρ(π)i

′s
defined by the right-hand side of (2.2), without R(.) having an interpre-
tation of system-reliability. We observe that the results and methods of
Section 5 (and 4) extend to such assembly problems when g(.) is any asym-
metric Schur convex function on P L,U and the ρui

′s are arbitrary num-
bers that satisfy (2.1). In particular, the nonpositivity of the ρui

′s is needed
for the representation of ρL,U

∗ through (5.3) (and its instance (4.3) that
applies to the prescribed-sizes case). Still, these formulae – (5.3) and (4.3) –
do have simple counterparts when nonnegativity replaces the nonpositivity,
that is, (2.1) is replaced by

−∞<ρu1 <ρu2 < · · ·<ρunu
<0 for u=1, . . . , t. (6.1)

Consequently, one can derive counterparts of the results of Section 5, in
particular, P L,U =CρL,U

∗ , (providing a representation of P L,U through a sys-
tem of linear inequalities), the vertices of P L,U are the vectors associated
with simple monotone assemblies and directions of edges of P L,U are pro-
portional to differences of standard unit vectors. When g is strictly asym-
metric Schur convex, and the inequalities in (2.1) or (6.1) are strict, we get
that every optimal assembly has the special structure.
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